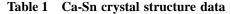
Ca-Sn (Calcium-Tin)


H. Okamoto

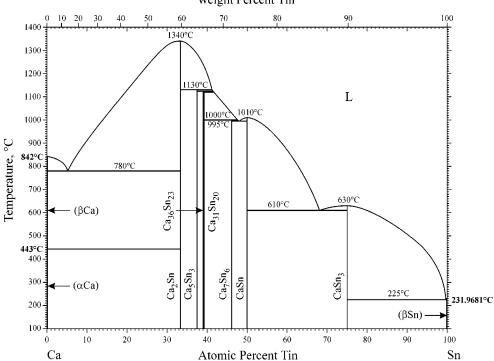

The evaluated [Massalski2] diagram shows the existence of four phases, Ca_2Sn , $Ca_{31}Sn_{20}$, CaSn, and $CaSn_3$, in the Ca-Sn system primarily on the basis of work by [1926Hum] and [1977For]. The liquidus boundaries were mostly speculative. In particular, the Ca_2Sn liquidus is unusually asymmetric [1994Oka].

Figure 1 shows the Ca-Sn phase diagram determined by [2000Pal] using differential thermal analysis, powder and single crystal x-ray diffraction, and metallographic analysis. Three additional phases were found in this system: Ca_5Sn_3 , Ca_7Sn_6 , and $Ca_{36}Sn_{23}$.

Because $Ca_{36}Sn_{23}$ and $Ca_{31}Sn_{20}$ are only ~0.2 at.% apart

Phase	Composition, at.% Sn	Pearson symbol		Strukturbericht	
			Space group	designation	Prototype
(<i>β</i> Ca)	0	cI2	Im3m	A2	W
(aCa)	0	cF4	$Fm\overline{3}m$	A1	Cu
Ca ₂ Sn	33.3	oP12	Pnma	C23	Co ₂ Si
Ca ₅ Sn ₃	37.5	<i>tI</i> 32	I4/mcm	$D8_l$	Cr ₅ B ₃
Ca36Sn23	39.0	<i>tP</i> 118	P4/mbm		Yb ₃₆ Sn ₂₃
Ca31Sn20	39.2	<i>tI</i> 204	I4/mcm		Pu31Rh20
Ca ₇ Sn ₆	46.2	oP52	Pnma		Ca ₇ Sn ₆
CaSn	50	oC8	Cmcm	B_{f}	CrB
CaSn ₃	75	<i>cP</i> 4	$Pm\overline{3}m$	$L1_2$	AuCu ₃
(βSn)	100	tI4	$I4_1/amd$	A5	βSn

Weight Percent Tin

Fig. 1 Ca-Sn phase diagram

and the space group $Ca_{36}Sn_{23}$ is a subgroup of the space group $Ca_{31}Sn_{20}$, it is likely that these two phases represent the compositional boundaries of a phase that undergoes a second-order transition with composition variation. Alternatively, either $Ca_{36}Sn_{23}$ or $Ca_{31}Sn_{20}$ is stable only in a very narrow temperature range [1993Oka]. Further investigation, particularly of the structural details, would be helpful.

Table 1 shows Ca-Sn crystal structure data, as given by [2000Pal].

References

- **1926Hum:** W. Hume-Rothery: J. Inst. Met., 1926, vol. 35, pp. 319-35.
- **1977For:** M.L. Fornasini and E. Franceschi: *Acta Crystallogr.*, 1976, vol. B33, pp. 3476-79.
- **1993Oka:** H. Okamoto and T.B. Massalski: J. Phase Equilibria, 1993, vol. 14 (3), pp. 316-35.
- **1994Oka:** H. Okamoto and T.B. Massalski: *J. Phase Equilibria*, 1994, vol. 15 (5), pp. 500-21.
- 2000Pal: A. Palenzona, P. Manfrinetti, and M.L. Fornasini: J. Alloys Compounds, 2000, vol. 312, pp. 165-71.